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Wave mechanics of breakdown 
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Kinematic wave theory is used to determine under what conditions breakdown 
of a steady or unsteady laminar flow into high frequency oscillations should 
occur. The analysis of a small-scale secondary wave riding on a large-scale 
inhomogeneity , such as that produced by a finite amplitude primary instability 
wave, reveals that the breakdown mechanism has three basic ingredients: (i) 
a self-excited secondary wave with a group velocity near the propagation velocity 
(phase velocity) of the primary wave, (ii) space-time focusing of the secondary 
wave train on the primary wave crest and (iii) a nonlinear filtering mechanism 
leading to rectification of the secondary wave. 

The theory is applied to a Iaminar shear flow. Good quantitative agreement 
with the experiments on boundary-layer transition by Klebanoff, Tidstrom & 
Sargent (1962) is found for the critical condition leading to breakdown. Also, 
the theory is able to explain all the main qualitative breakdown features observed 
by Klebanoff et aZ. and others, such as the rapid localized onset, and the formation 
of a hairpin vortex lifting up from the surface downstream of the primary wave 
crest. 

1. Introduction 
The transition of laminar flow to turbulence was one of the very first fluid 

flow phenomena to receive serious attention in the history of fluid mechanics. 
In  his famous investigation of flow in a pipe, Reynolds (1883), employing dye to 
visualize the flow, observed that, as the velocity in the tube was gradually in- 
creased, the dye streak would, at  some distance downstream from the tube 
entrance, suddenly mix up with the surrounding water and thus indicate the 
appearance of a rapid unsteady ‘ sinuous motion ’ (later termed ‘turbulent motion’ 
by Lord Kelvin). Reynolds also noticed that the ‘flashes ’ of turbulence would be 
intermittent at  first, and that the critical velocity at which they 6rst appeared 
depended strongly on the level of disturbances in the water present when it was 
drawn into the tube. The suddenness of transition has later been demonstrated 
to be a feature common to all high Reynolds number shear flows in the presence of 
walls. In  their boundary-layer instability experiments, Schauber & Skramstad 
(1948) found that the final transition to a fully turbulent flow occurred in the 
form of intermittent high frequency oscillations of large amplitude. A visual 
illustration of this process was provided by Emmons (1951), who, in observing 
the flow of a thin sheet of water down an inclined plane, saw the turbulence first 
appearing in localized spots which would move downstream with the flow, spread 
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laterally and eventually merge to produce a fully turbulent flow. Later, more 
quantitative investigations such as those by Klebanoff et al. (1962), Kovasznay, 
Komoda & Vasudeva (1962), Hama & Nutant (1963) and Obremski & Fejer 
(1967) attest to the suddenness and localized initial appearance of the high 
frequency oscillations. We shall here use the term breakdown for the onset of this 
mode of secondary oscillation in accordance with the terminology of Klebanoff 
et al. (1962) (hereafter referred to as I). Recent experiments in turbulent shear 
flows (Kline et aZ. 1967; Kim, Kline & Reynolds 1971) give strong indications that 
‘bursts ’ of turbulence resembling breakdown appear intermittently in fully 
developed turbulent shear flows, as well, and may indeed be the main mechanism 
responsible for maintaining the turbulence. 

Although a great deal of experimental information concerning breakdown 
has accumulated over the last decade or so, no completely satisfactory theoretical 
explanation of the phenomenon has as yet appeared. The most commonly 
expressed hypothesis, first proposed by Betchov (1960), is that breakdown is a 
manifestation of secondary instability in the local, highly inflexional, instantane- 
ous velocity profiles induced by the primary instability wave. The secondary 
instability hypothesis in its simplest version based on the assumption of a quasi- 
steady parallel primary flow does not, however, seem to be able to explain the 
suddenness in the onset of breakdown. Greenspan & Benney (1963) included the 
effect of unsteadiness in the secondary instability model by considering a paral- 
lel shear flow whose thickness varies periodically with time. The analysis, which 
was carried out for a simplified straight-line free-shear-layer velocity profile, 
showed that a substantial increase in growth rate over that of a quasi-steady 
analysis was produced during the contraction phase of the oscillation cycle. 
However, the theory would not give information regarding what conditions would 
lead to the appearance of first secondary waves. Obremski & Morkovin (1969) 
in analysing the experiments of Obremski & Fejer (1967) used quasi-steady sta- 
bility theory to trace the development of wave packets in a shear flow varying in 
time and space, but they were not able to deduce a precise breakdown criterion. 

Probably the most puzzling feature of the breakdown phenomenon is the ex- 
ceedingly rapid growth of the secondary disturbance a t  the onset. This is exempli- 
fied in figure 1, reproduced from I, which shows the fluctuation amplitude down- 
stream of an oscillating ribbon measured at  a distance from the wall of approxi- 
mately 0.6 boundary-layer thicknesses. The accompanying oscillograms of the 
u fluctuations (figure 21 of I, not reproduced here) indicate clearly that the rapid, 
almost instantaneous rise in amplitude seen at a distance of 9 in. from the ribbon 
is primarily caused by a ‘spike-like’ disturbance which in the distance of 0.25in. 
from x = 9 in. to x = 9.25in. has grown by a factor of about 6. As the frequency 
measurements indicate that this distance is only about 0.7 of the wavelength of 
the secondary disturbances, the equivalent exponential growth rate would be 
much higher than the secondary inflexional instability mechanism could provide 
at this wavenumber. (The calculations reported in $4, below, based on quasi- 
parallel theory, give a growth rate close to zero for the wavenumber of interest.) 
One is therefore led to look for some other explanation for the enhanced growth. 
One that could be dismissed at  the outset is that the rapid growth could be mainly 
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FIGURE 1. Variation of secondary disturbance amplitude with distance 
from oscillating ribbon (from I). 

due to the lifting up of a small-scale but intensive disturbance piercing the 
y/6 = 0.6 level just behind x = 9 in. The measurements show that the secondary 
disturbance has a y extent somewhat greater than 6 (I, p. 25) ,  so that once the 
disturbance appears it will be felt all across the boundary layer with a maximum 
amplitude to be expected from inviscid stability theory to be foundnear the inflex- 
ion point of the instantaneous profile. In the case of interest this is located at about 
y/S = 0.5, i.e. close to the point of measurement. (There is also another inflexion 
point a t  y/6 N 0.25, but this corresponds to a minimum in the shear and would 
not produce instability.) The lift-up velocity required to produce the whole obser- 
ved growth rate would therefore be truly enormous, although of course some 
small contribution could come from this effect. It should be noted that measure- 
ments of the intensity closer to the wall such as those of figure 4t in I do not show 
the rapid rise because (a )  the amplitude of the secondary instability is small at  
this position (y/6 N 0.2) owing to the large distance from the inflexion point 
and ( b )  the primary wave has a higher amplitude there than near its phase reversal 
point at  y/6 2: 0.6 and therefore tends to mask the high frequency oscillations. 

In view of the above we shall therefore instead look for a different mechanism 
in which the nonlinearity is by necessity strong such as in a shock wave, a hydrau- 
lic jump or in vortex breakdown. Suggestions along this line have been made by 
Lighthill (1970, SIV). Whether a particular flow can remain smooth may be 
investigat,ed by analysing the development of a small wavelike perturbation of 

t One should notice, however, that the experimental conditions underlying figures 4 
and 21 are slightly different, so that the location of the breakdown is somewhat different 
in the two cases. 
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the flow as in hydrodynamic stability theory. Consider as an illustrative example 
the supersonic one-dimensional gas flow in a Lava1 nozzle. An oscillatory distur- 
bance will produce two sets of acoustic waves travelling downstream in the nozzle : 
an advancing one propagating with a velocity of U + a  (where U and a are the 
local flow and sound velocities, respectively) and a receding one with a propaga- 
tion velocity of U - a. It is the latter that is of interest here. Conservation of wave 
action in a linear system (see below) will mean that the amplitude of the receding 
wave train should vary as (U-a)-&. Hence, according to linear theory, the 
amplitude of the receding waves would become infinite if the throat area were 
to be decreased so as to produce sonic flow there. 

This is an example of space-time focusing of the waves brought about by con- 
secutive wave fronts catching up with each other and thus producing a concentra- 
tion of wave energy. Of course, the infinite amplitudes will not occur in reality 
owing to diffraction and because nonlinear effects will set in once the amplitude 
becomes large. An essential effect of nonlinearity is to give the positive and 
negative portions of the wave slightly different propagation velocities. Thus, 
those of positive pressure perturbation will travel somewhat slower than U - a 
and therefore tend to get trapped somewhat upstream of the sonic throat, where- 
as those of negative pressure will have a slightly higher propagation velocity and 
therefore will be swept downstream and out of the throat. The throat will hence 
act as a rectifier and collector of acoustic energy radiated from upstream thus 
making the disturbance pressure build up rapidly and initiate a shock, which 
will subsequently cause choking of the nozzle. This simple example suggests 
the existence of a flow which cannot support arbitrary infinitesimal perturbations 
but which must break down locally into finite amplitude initially small-scale 
oscillations. 

It is the purpose of the subsequent analysis to demonstrate that breakdown 
should be a distinct possibility for any inhomogeneous continuum system 
which can support propagating waves of scale small relative to the scale of the 
inhomogeneities. 

2. Critical condition for breakdown 
As the experiments on transition indicate that the secondary disturbances 

appearing a t  breakdown have a length scale much smaller than that of the pri- 
mary instability wave, one can in the analysis of them apply the ideas of kine- 
matical wave theory developed in recent years by Whitham (1965), Hayes 
(1970) and others. We shall here follow Hayes’s (1970) exposition of the basic 
theory. 

The kinematic wave theory deals with the propagation of wave trains in a 
slightly inhomogeneous medium. Provided that the inhomogeneity is slight in 
the sense that the variation in the medium properties is small within a distance 
of one wavelength and time of one cycle of the wave considered, the wave propa- 
gation characteristics can be described approximately by a local dispersion 
relationship 

(1)  w = Q(x, k, t ) ,  
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where w is the frequency, x the position vector and k the wavenumber vector. 
For the moment we shall assume L2 to be real, as would be the case for wave propa- 
gation in a conservative system. Later, the changes needed for treatment of a 
slightly non-conservative system will be incorporated. One may consider either 
local waves or so-called modal ones (Hayes 1970). For the latter, the behaviour 
with the cross-space co-ordinate(s) is given by the eigensolution of the local 
eigenvalue problem. In the problem at hand, the waves are modal ones of the 
(straight or oblique) Tollmien-Schlichting or Rayleigh (i.e. inviscid) variety 
propagating in the x, z, t space, and their behaviour with y is given by the solution 
to the Om-Sommerfeld problem for the local instantaneous velocity profilet. 

Central to the theory is the concept of a wave group trajectory given by 

dxldt = c, (2) 

where c = s1, (3) 

dkldt ak/at+(C.V)k = -fix. (4) 

x = x(a, t), k = k(a, t ) ,  (5) 

is the group velocity. The wavenumber varies along the trajectory according to 
the relation 

Solution of (1)-(4) determines a set of rays 

where a is a parameter having the same dimensions as X. It may be regarded as 
the Lagrangian label of the wave group. Note that there will generally be a dif- 
ferent ray for each initial wavenumber considered. 

The above relations are purely kinematical and simply express the conserva- 
tion of the number of wave crests. The variation of wave amplitude along the 
ray can be determined through Whitham’s (1965) principle of conservation of 
wave action. In a linear problem the wave action density A ,  which is a quantity 
having the dimensions energy times time, is proportional to the square of the 
amplitude, and its flux is CA . For a linear conservative system the following con- 
servation law then holds: aAlat + v. ( c ~ )  = 0 ,  (6) 

or dA/dt = -A(V.c). 

In evaluating the right-hand side of (6 a )  with the aid of (3) one must keep in mind 
the variation of k along the ray imposed by (4). Therefore, we shall, following 
Hayes (1970), distinguish between propagation space (x, t )  (in the present cases 
(x, z, t )  with y constituting the cross-space variable) and the augmented space 
(x, k, t). The symbols slat, a/ax and V are used for derivatives in the propagation 
space and subscripts for derivatives in the augmented space. Thus the operator 
dldt also includes the contribution from the variation of k along the trajectory. 

It can be shown that the conservation law (6) is equivalent to invariance of the 
quantity A J ,  where J = IV,X~ (7) 

t Lighthill (1969) has proposed the use of local waves for the analysis o f  shear flow 
turbulence. This would be appropriate for very short secondary waves of scales much 
smaller than the boundary-layer thickness. In  the case of breakdown studied by Klebanoff 
et al. (1962) the secondary wave first appearing was found t o  have a wavelength of about 
one and a half times the boundary-layer thickness. 
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is the Jacobian determinant of x with respect to parameter space (Hayes 1970). 
J is a measure of the volume as convected by the rays. Conservation of wave 
action takes into account the changes in wave intensity brought about by 
convergence or divergence of neighbouring rays. A point where J = 0 is known 
as a focus and is a singular point in kinematic wave theory. 

To determine J directly from the solution ( 5 )  one needs to compute neighbour- 
ing rays and then the determinant ( 7 ) .  Alternatively, J can be calculated by direct 
quadrature of the equation 

(8) 

which is obtained from (Ga) and imposing constancy of A J .  
In  order to make use of these ideas for the analysis of shear waves we need 

to extend the theory to non-conservative systems. For such systems one will 
have a complex local dispersion relation i2 = i2@) + ii22Ci) in which k may be con- 
sidered real. For small growth rates Q 2 C i ) ,  equation (Ga) and the linear theory for 
a homogeneous system suggest that a good approximation to the rate of change 
of the action variable A should be (see Lighthill 1969, equation 7 )  

d(1n J ) / d t  = V .  c, 

with c determined from Q@). (For simplicity, the superscript will be omitted from 
Q@) in the following.) This equation reduces to the correct one in both the con- 
servative and homogeneous limiting cases, in the latter when interpreted in terms 
of a complex k producing the familiar Gaster (1968) relationship between tem- 
poral and spatial growth rates. As the results that follow indicate that the situa- 
tion of primary interest is one for which Q(i) is equal or close to zero, the approxi- 
mation (9) should be adequate for the present purpose. Combination of (8) and 
(9) gives 

A =  'Onstant J exp (~kidt), 

which shows that a focus will produce a singularity in A for a slightly non- 
conservative system as well, provided that JR")d t  + -a. I n  reality, the wave 
amplitude will of course not become infinite. The ray theory ceases to be valid 
near a focus, and a more complete theory would be required there in which local 
diffraction as well as nonlinear effects would have to be considered. To make a 
complete assessment of whether the total growth of the wave is indeed large a t  the 
focus it would be necessary to study how the quantity [Q(Qdt behaves (as well 
as to determine the way in which J approaches zero, i.e. how strong the singularity 
is). However, as the analysis below indicates that the total amplification also 
usually becomes the largest near the focus, the search for possible zeros of J 
would be the most essential step in the task of finding out where nonlinearities 
are first likely to become strong. 

We shall study the propagation of a wave packet through inhomogeneities 
caused by a locally plane, travelling primary wave whose amplitude may vary 
along the wave (for example, because of spanwise irregularities) so as to produce 
a minimum in the component of c normal to the wave front somewhere along the 
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wave. Such a minimum will generally occur near that point along the crest of the 
primary wave where its amplitude has a maximum. By crest we mean that phase 
of the primary wave cycle at which the deflexion of the outer streamlines away 
from the wall is the largest. We shall thus be interested in the neighbourhood of 
the 'top' of the crest along the wave. There the normal components of the local 
primary instantaneous velocities have their smallest values and, for a given wave- 
number, the normal component of c is then usually the lowest, being in a sense a 
weighted average of the primary velocities. The peak velocity profiles labelled as 
instantaneous in the experiments by Klebanoff et ul. (1962) correspond essentially 
to top of the crest. Near this point, the tangential component of c can be expected 
to have an extremum for reasons of local symmetry about this point in the tan- 
gential direction, so that along a section normal to the crest through the top of the 

(11) 
crest 

where f ;  is the co-ordinate normal to the primary wave front (considered positive 

(12) c(n) = Q downstream) and 

is the component of c normal to the wave front, a being the corresponding wave- 
number component. Note that the tangential component will not contribute 
substantially to V. c as in the section considered its derivative in the tangential 
direction would be close to zero. Now, if the inhomogeneity caused by the pri- 
mary wave is a frozen pattern moving with the (phase) velocity c,, 

v . c 2: ac(n)/ag 

where c p )  is the primary phase velocity component normal to the wave. Thus, 

By combining (8), ( 1  1)  and (14) we obtain 

1 dc@) -- - d(ln J )  
at (c(") - C P ) )  dt ' 

or, provided that c p )  is independent of time, 
J = K(c(")-c(n) 0 ) ?  

where K is a constant for each ray determined by the initial condition. It thus 
follows that J will have a zero whenever the component of the secondary group 
velocity normal to the primary wave front becomes equal to the normal 
component of the phase velocity of the primary wave. Since only the normal 
components of c and c, need be considered once the appropriate section along the 
primary wave front has been located, the problem of finding the focus can, 
through an appropriate rotation of the co-ordinate system, be reduced to the 
study of wave propagation in one space dimension. Thus, for the modal 
waves of present interest we need only concern ourselves with two-dimensional 
waves. As no confusion can arise thereby, we shall for simplicity in writing 
omit the superscripts on cp) and c(n) in the following. 
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For the case of a neutralIy stable primary wave we obtain from (2)-(4) with 

(17) 

(18) 

f = z-cot dgat  = c - c,, 

daldt = - Qx = - Qc 

and dc/dt = Qat + cQax - Qaa Qx = (c - co) oat - Qam Q,. 

-- Q, am 
a t  c-c,’ 

- _ -  Elimination oft gives 

dc (c - co) Qa, - Qa, Qc _ -  
- c-co f 

which are convenient forms for studying the ray trajectories leading to simple 
analytical results in the f ,  c plane. We shall consider the local dispersion relation 
to have the character usually encountered in inflexional boundary-layer in- 
stability. Typical such curves are those of figures 7 and 9. Thus, !3is positive for 
values of the wavenumber a less than that for neutral stability as and c, = Qaa 

is negative in this neighbourhood. There is one such dispersion diagram associ- 
ated with each value off ,  with the lowest values of c, for a given a, appearing at  
the crest, so that Q, and 0,. - cE are both zero for f = 0. (If the primary wave has 
large phase shifts, these zeros may be located at  slightly different points. As the 
analysis below shows, however, it is the zero of QE that should be associated with 
5 = 0.) An initial point in the f ,  c plane will, through the dispersion relation, define 
a value? of a, which then can be used as a starting value in the step-by-step 
integration of (20) and (21). For regions close to the point [ = 0,  c = c, (labelled 
0 in the following) it is possible to find simple approximate solutions by neglecting 
the first term in the numerator of (21) and setting 

Q a a  2: (Qma)o  = -B, Qc N f (Qc[)o = CC, (22) 

where B and C are constants, which, upon insertion into (21) and separation of 
variables, yields the following solution: 

(C - c ~ ) ~  - BCf’ N (c,  - c,)’- BCl;, 

Q - ac, = (Q - OIC,),, 

(23) 

(24) 

where the suffix a refers to the Lagrangian label of the wave group as before. The 
ray trajectories are thus hyperbolas in the c plane.$ 

The relation (24) is exact and states that the frequency of the wave is constant 
relative to a co-ordinate system moving with the primary wave. The time required 
for the wave group to reach a point f ,  c is found through integration of (19) using 
the same approximations as before : 

t Actually, when c = c(u) has a maximum, there may be two values of u for a given 
point 6,  c. However, as we are primarily interested in the higher wavenumber region, 
this complication need not concern us here. 
1 This is always the case when Qaa and Q,, have the opposite sign. If not, the trajec- 

tories will become ellipses. 
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FIGURE 2. Secondary ray trajectories (hypothetical) for a neutrally stable 
nrimwv wave. (0,) Before breakdown. (b )  After breakdown. 
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where c, - co is the extremum of c - co reached in the trajectory. The total ampli- 
fication of the wave can also be calculated. We may assume that near c = co 
the amplification rate varies approximately linearly with c, so that 

where c, is the group velocity a t  neutral stability and D is a constant. Using the 
relations between [, c and t we find 

! a d )  2: D(c-c,), (26) 

1 W d t  = D[<-<,+(c-c,)(t-t,)]. (27) 

With the aid of the above results for the behaviour near 0 one can easily sketch 
the ray trajectories. Typical (hypothetical) examples are shown in figure 2 .  At 
larger distances from the crest the hyperbolas will become distorted. For example, 
there would generally be a maximum as well as a minimum value of c possible a t  
each [, so that the trajectories would span only a finite range of c values. The 
unstable region will shrink away from the crest and may disappear altogether 
as the inflexional regions eventually may vanish closer to the neighbouring 
troughs. There are only two limiting trajectories that lead to the point 0, namely 
those following the asymptotes of the distorted hyperbolas. The trajectory 
starting at P will reach 0 after an infinite time (see ( 2 5 ) )  and then move out either 
along O P  or OQ' taking an infinite time doing so. The trajectory starting a t  0 
will proceed either along OQ' or OF. All other trajectories are uniquely defined. 
The ones to the left of POP' with c > co will first begin to catch up with the crest 
but will slow down while doing so and not quite reach it. They will cross the line 
c = co with infinite slope and will experience space-time focusing there. Similarly, 
the waves to the right of QOQ' will first recede towards the crest, focus at  c = co, 
but will then speed up and eventually move away downstream. The waves above 
P'OQ' will move past the crest since c is always greater than co, whereas those 
below PO& will be overtaken by the crest, as this then always moves faster than 
the wave, 

Consider now the amplification of the secondary waves. Take first the case, 
depicted in figure 2 (a ) ,  for which the unstable regime is everywhere above the 
line c - co. This may be typical of the earlier stages of the primary wave develop- 
ment in which its fluctuation amplitudes are small and hence whatever inflexion 
points are produced in the instantaneous velocity profile are located in the outer 
part of the boundary layer. The rays coming through the unstable region will 
receive a finite amount of amplification but will eventually move out into 
regions with damping. The wave on the limiting trajectory from F' will become 
completely quenched as it approaches 0. Now, consider a later stage of the pri- 
mary wave development illustrated in figure 2 (b ) ,  in which the unstable region 
has moved past 0. (This could also come about because of speed-up of the primary 
wave.) There will then be waves receiving a large amount of amplification. I n  
particular, those coming in along the limiting trajectories will continue to 
amplify for ever, so that their total growth will become infinite by the time they 
reach 0, however small W i s .  I n  addition, focusing will reinforce the disturbance 
even further, thus making almost certain that strong nonlinear effects will set in. 
A critical condition is therefore reached when the stability boundary first passes 
over 0, i.e. when co = c,. (28 )  
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The above reasoning would indicate that, before the critical condition is 
reached (co < cs), all disturbances travelling with the crest would be completely 
quenched, whereas immediately after cs has become equal to co, disturbances 
reaching 0 would have gone through an infinite amplification. A plot of distur- 
bance amplitude at the crest versus time (following the crest) would then show 
zero until the instant the critical condition is reached and infinity thereafter. 
This presupposes, however, that the primary wave has existed for an infinite 
time before the critical condition is attained. Also, we have here altogether 
neglected the effect of the rate of change of the primary wave properties, which 
will be examined next. 

We begin by considering the condition for focusing. As the primary wave is 
now unsteady, we shall define a local phase velocity by 

This definition is suggested by the steady case, for which c is a function of 
[ = x - cot only. The phase velocity so defined is a measure of the local velocity 
with which an inhomogeneity travels, as mirrored in the associated temporal 
and spatial variations of the energy propagation velocity. The value of co will 
generally depend on the amplitude of the non-steady primary wave (see below). 
For the three-dimensional case a x component could be defined in an analogous 
manner. Combining (29) with the definition of dc/& one finds that 

ac a c p t  
ax c-co 
_ -  -- 

and equation (8) for J can thus be written as 

In J = 1- dc/dt dt = 1- dc 
c - c o  c-coy 

which is identical to (15) for the steady case, except that now co is a function oft 
and hence c. It therefore follows that J will vary near co as 

(32) J = K(c - cO)1lU-d, 

where 
K = O -  dc dco/dt -- 

dc dcldt (33) 

evaluated at  c = co. Thus, with the definition (29) the focus is again identified 
with c = co, provided that K < I and - K  + GO. To obtain an expression for co 
directly in terms of C2 we rewrite (30) as follows: 

When c = co we have either that the numerator is zero or the denominator is 
infinite. In the former case dcldt = 0,  so that I K I  = I(dc,/dt)/(dc/dt)l = GO, and 
J is not zero. In  the latter, act/ax = GO. By taking a/ax Of (4) we obtain with the aid 

50 FLJI 56 
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FIGURE 3. Secondary ray trajectories (hypothetical) for a growing primary wave of phase 
velocity ci. 

(This is Hayes’s (1970) ‘derived ray equation’ (19) in one space dimension.) 
Near the singularity the first term dominates, and we have 

a aa -1 -[(-) at ax ] = Qua 

or, using (4), 

Taking Qz to be approximately constant near the zero of (acz/ax)-l, and making 
use of the fact that c = Mu = co at this point, we find that 

aapx = - a,/(c -Go) 

co = - Q2,,/Q2a, = -c,/c,. 

(38) 

near the focus. Substitution of this into (34) yields 

(39) 

A sufficiently general approximate expression describing the variation of c near 
the crest of a slowly growing primary wave should be the following: 

c = cl(a) - f ( t ,  a )  exp (bf’at), (40) 

where c1 is of order unity, f is positive and proportional to the primary wave 
amplitude, s2f)(t)  is the growth rate of the primary wave, and 

c;(t) being the propagation velocity of the primary wave crest. Insertion into (39) 
gives 

co = c; + Q f ) ( f / f 6 )  = c; - Qf)f/CE. (42) 
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In  a 6 ,  c diagram the c = co-curves will be independent of time and approximately 
hyperbolas with f ;  = 0 and c = c; as asymptotes (see figure 3). With the above, 
the equations determining the trajectories become 

agat  = c - c;, (43) 

one sees that the region near 0 may be approximated in the same way as in the 
steady case. Thus, the trajectories are again hyperbolas but now displaced a 
distance A to the right. Typical trajectories are sketched in figure 3. For f; > 0 
the focusing takes place at  values of c slightly greater than c& where for 6 < 0 it 
occurs below c = c;. An approximate solution of the equation for aa/i?x (see appen- 
dix) shows that only trajectories starting to the left of PO‘P‘ and to the right of 
QOQ’ can focus. The line segment along which focusing of unstable waves can 
take place is shown by the heavy line in figure 3. Evidently, the disturbances 
that now first become strong originate a small distance downstream of the crest. 
Also, the first unstable waves that can focus may appear even slightly before 
c; = c, is reached. For small primary wave growth rates, however, the condition 
(25 )  with c,, replaced by c; should again rather accurately identify the critical state 
at  which nonlinear effects become strong. 

3. The qualitative effects of nonlinearity 
Whereas the analysis carried out above is quite general and should apply to 

any continuum system, we need in the discussion of nonlinearities to specify 
what system is considered because the nonlinear characteristics differ consider- 
ably from system to system. Therefore, the discussion will be here confined to 
shear waves. Once the critical condition has been reached and nonlinearity be- 
comes strong, positive and negative portions of the secondary wave cycle will 
behave differently. We shall consider as positive that part of the secondary wave 
cycle in which the disturbance vorticity is predominantly positive. As the linear 
theory identifies the condition of breakdown as one in which the secondary 
wave propagates with a group velocity very close to the phase velocity of the 
primary wave, the main direct nonlinear effect on the secondary wave that needs 
be considered is the added convection velocity in the streamwise direction of the 
secondary vorticity perturbation induced by the wave itself. To understand 
this effect qualitatively, we may use a simplified model in which the secondary 
wave train is approximated by a row of concentrated vortices of alternating 
sign being convected downstream by the primary flow. The boundary condition 
of zero normal velocity at the wall can be satisfied by the introduction of mirror 
image vortices as shown in figure 4. It follows from the figure that the self-induced 
effect will be such as to slow the positive vortices down and speed the negative 
ones up. 

Now consider the different qualitative behaviour of the positive and negative 
portions of the secondary waves during passage through the critical region as 

50-2 
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FIGURE 4. Simplified model illustrating the induced convection velocity of 

secondary vorticity. 
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FIGURE 5. Ray trajectories (hypothetical) for positive and negative secondary 
wave portions illustrating rectification effect. 

shown in figure 5. The self-induced effect is such as to add or subtract amounts to 
the propagation velocity of the group proportional to the amplitude of the wave 
but is likely not to alter the dispersion relationships substantially. A negative 
portion of the secondary wave will hence tend to be speeded up relative to the 
wave crest, whereas the positive one will be slowed down. For a wave starting 
along the ray R in the figure, the negative part of the wave, once it nears focusing 
and becomes strong, will veer off rapidly towards the right in the diagram and 
thus pass through the focus downstream of the crest and eventually into a region 
of stability. A positive part of the wave, on the other hand, will turn sharply to 
the left once it gets close to the focus and will therefore never be able to pass 
through the focus. Thus, it will be trapped on the wave crest in a region in which 
it can continue to amplify. For the waves originating a t  R' it  will be the negative 
part that tends to move closer to the crest. However, as it slides along the line of 
foci, it will eventually get out in the stable range and be quenched. Hence, as 
the critical condition is reached, there will be a very rapid build-up of positive 
disturbance vorticity just downstream of the crest. 

Because of the very strong Concentrating effects both from focusing and 
wave trapping, this build-up will require only a very short distance, and it is 
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likely that the secondary vorticity will have built up its full strength already 
in the first half wave beyond the critical point. For a spatially growing primary 
wave, the streamwise position of the onset of criticality will fluctuate back and 
forth during the primary cycle as new crests become critical in succession. A 
measurement station a t  a fixed x location just beyond that a t  which the crest 
of the primary wave first becomes critical will therefore be swept over by second- 
ary disturbances during only a small portion of the primary cycle, so that a t  the 
early stages of breakdown there would be time and room for only one secondary 
half wave between the point of first criticality and the measurement station. 
The strong secondary vorticity concentration, which according to the quasi- 
steady stability theory takes place predominantly around y stations close to the 
instantaneous inflexion point, would consequently give rise to a single half wave 
in the measured velocity which would be negative or positive depending on 
whether the velocity is measured below or above the vortex centre. As the 
point of measurement is moved downstream there will be room for two or more 
half waves. Hence, because of the rectification due to nonlinearity the signal 
will look like a piece of a sinusoid with either the positive or negative portions of 
the waves missing, i.e. it  will have the appearance of a series of spikes as is 
indeed observed in transition measurements (see further next section). 

For the three-dimensional development of the secondary disturbance one can 
deduce the following qualitative picture guided by general fluid-dynamical 
principles and experimental evidence. Continuity of vorticity requires that the 
disturbance vortex lines created at the spanwise position of breakdown terminate 
in the quasi-steady primary field at  spanwise positions outside the critical region. 
As the secondary disturbance vorticity is thus produced essentially by a local 
lift-up of the primary vorticity distribution, a ‘hairpin disturbance vortex 
is formed with its ‘head ’ lifted up at  the breakdown position and ‘legs ’ extending 
down into the neighbouring non-critical spanwise stations and attached to the 
quasi-steady undisturbed vorticity distribution there. When the head is con- 
vected downstream, the legs will tilt over more and more while stretching and 
thereby create an upward velocity component tending to lift the head further 
away from the surface. Since it is thus blown into a region of higher velocity, the 
head will move away downstream a t  a velocity somewhat higher than that 
predicted by the two-dimensional theory. The spanwise extent of the critical 
region will increase continuously as the amplitude of the travelling primary 
wave grows, so that the region of breakdown will attain a planform looking like a 
growing ‘blunt-nosed wedge with its apex pointing downstream. 

4. Comparisons with experiments 
In  order to compare the theory with experiments on breakdown in the general 

case of unsteady shear flow, one would need instantaneous velocity profiles as 
functions of space and time so that the dispersion relation could be obtained for 
each combination (k, x, t )  and thence c,, (equation 39) to determine the location 
of criticality. Such profiles could be found from perturbation theory or experi- 
ments. The calculation is much simplified, however, when the space-time 



790 

I 

M .  T. Landah1 

2 0.5 
Fh 

0 
0.5 1 -0 

u/u, 
FIGURE 6. Fitted velocity profiles to the measured instantaneous and mean velocities a t  
station C from the experiments in I. 0-0, instantaneous proiile ; u---n, mean profile. 

0.6 

0.4 

s 

1 2 3 4 
a8 

FIGURE 7 .  Dispersion diagram for instantaneous proiile at station C. (i) Group velocity 
c/U, .  (ii) Phase velocity c9/U1. (iii) Growth rate Qci)8/U,. (iv) Primary phase velocity 
c;/u,. 

inhomogeneity is a primary wave with a phase velocity and instantaneous 
velocity distribution that can be obtained directly from the measurements. 
This is the case with the experiments of I. 

In the investigation reported in I controlled spanwise flow irregularities were 
introduced by means of small strips of tape glued under the oscillating ribbon 
at  regular spanwise intervals. For the higher ribbon amplitudes these produced 
spanwise variations in the primary wave fluctuation intensities with fluctuation 
amplitude peaks and valleys (upstream of fist breakdown location) in between 
and at  the spanwise positions of the strips, respectively. Breakdown was observed 
to occur in the peak region and at  that primary phase a t  which the instantaneous 
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FIGURE 9. Dispersiondiagram for instan- 
taneous profile at station D (at break- 
down). (i) Group velocity c/U,. (ii) Phase 
velocity c,,/U,. (iii) GrowthrateLl(i)cY/U,. 
(iv) Primary phase velocity ci/U,. 

velocities generally were the lowest, i.e. at  the primary wave crest. This is in 
accordance with the present theory since the group velocity of the secondary wave 
would be the lowest relative to the neighbouring troughs and the neighbouring 
valley regions where the primary wave velocity fluctuations would have their 
highest negative values. Because of the symmetry of the primary velocity 
field about the spanwise position of the peak the critical secondary waves would 
travel in the free-stream direction, i.e. would be unswept. For the calculations, 
polynomial expressions were fitted to  the instantaneous profiles for each station 
as shown in figures 6 and 8 and the corresponding dispersion characteristics 
(figures 7 and 9) obtained by a numerical procedure (Landahl 1969). The 
computer program gave phase velocities directly (also shown in the figures) and 
from these group velocities were determined by graphical differentiation. Trial 
calculations with slightly different polynomial fits than those shown gave varia- 
tions of the computedphasevelocities of approximately & 0902U, (U, = free-stream 
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velocity). Moderate variations of the Reynolds number had very little effect 
on the results, thus confirming that the secondary waves are essentially inviscid. 

The phase velocity of the primary wave could be inferred from the results of 
figure 7 in I (reproduced in figure 10). As mean profiles were also measured, how- 
ever, a separate calculation was carried out to determine co on the basis of two- 
dimensional linear stability theory. The comparison between the theoretically 
determined phase as function of downstream distance shown in figure 10 indicates 
good agreement. This might to some extent be fortuitous, however, since measure- 
ments of the phase variation across the boundary layer (figure 8 of I) indicate 
that, because of nonlinear effects, the troughs and crests move a t  somewhat 
different speeds. For the application of the present theory it is the phase velocity 
of the crest region which is of interest, but in the absence of this information or, 
alternatively, of the variation of the instantaneous profile with time and space 
around the breakdown region, the linear theory results were used. 

It is interesting that the experiments show the breakdown to be preceded by 
a fairly strong acceleration of the primary wave, so that criticality is reached 
mainly through the catching up of the primary wave with the secondary wave 
group rather than through the slowing down of the latter. Because the primary 
phase speed in the neighbouring valleys is not much changed from its Blasius 
value, this acceleration will cause a considerable phase lead in the peak region. 
From figure 10 one can estimate that at breakdown the primary wave front in 
the peak region has moved about l in.  ahead of the wave front in the valley. 
Since the distance from the peak to valley is only about B i n .  there thus results 
a considerable warping of the primary wave just before breakdown. This pheno- 
menon may be clearly observed in the experiments of Hama & Nutant (1963). 
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The present calculations show that the warping can be explained on basis of 
linear stability theory and is a direct consequence of the deformation of the 
mean velocity profile, presumably due to the Benney-Lin mechanism (Benney 
& Lin 1960; Benney 1961), leading to a differential in the primary phase velocity 
between peaks and valleys. That the two-dimensional theory should give such 
good quantitative agreement with the measured phase velocities is perhaps 
somewhat surprising in view of the strong three-dimensionality induced by the 
warping. However, what apparently matters most is that the relative change of 
the mean profile should be small over a distance of one primary wavelength, 
in which case the kinematical wave theory described in J 2 would apply. Accord- 
ing to this, the propagation velocities at the peak and the valley would be that of 
a wave with wave front normal to the free stream. To determine the changes 
in the primary wave amplitude one needs to include also the effects of the cover- 
gence and divergence of the rays as taken into account by the denominator J 
in (10). No calculations of the primary rays to determine this effect have been 
made, but the qualitative effects can be inferred from the diagrams of figures 10 
and 11 since the group velocity follows the same trend as the phase velocity. Up- 
stream of x - xo 21 5 in. the waves at  the peak and valley will move at approxi- 
mately the same speeds, and the effects of ray convergence will be slight, so that 
the growth rate will be approximately that given by the local dispersion relation 
for the mean profiles. Thus, the peak profiles, beginning to receive a noticeable 
inflexional region from station B on, will produce a much higher growth rate 
than those of the valley which become ‘fuller’ and more stable than the Blasius 
profile. From about x - xo = 5 in. on, however, the wave at  the peak is rapidly 
speeding ahead of that of the valley causing a divergence of the rays from the 
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peak region and a convergence towards the valley. This may possibly explain 
why the primary wave in the valley region subsequently begins to grow rapidly 
(figure 4 of I) despite the linear growth rate of the valley profile being close to 
zero, and that the growth at  the peak from station C on becomes substantially 
less than what the local dispersion relation would give. 

In figure 11 the computed group velocity of the secondary wave at  the crest 
for the wavenumber for neutral stability is plotted as function of downstream 
distance from the ribbon together with the phase velocity c; of the primary wave. 
Ignoring the effect of the primary wave growth rate, the critical condition should 
be reached when the two curves cross, which is seen to occur at  x -xo  = 8in. 
in good agreement with the experiments. If the effect of primary growth rate is 
included (this rate being quite small at breakdown judging from figure 9 of I) 
the station for breakdown would move slightly upstream. (Acceleration of the 
primary wave has no effect on the breakdown condition, equation (42).) The 
experimental uncertainty in determining the location of breakdown may be 
about 0.5 in.,t as would be commensurate with the present theoretical model, in 
which the precision of the breakdown location would be limited to about one 
secondary wavelength ( N = 0.3in.). The inaccuracies in the application of the 
theory are therefore roughly within the experimental uncertainties, so that the 
agreement between theory and experiments as to the location of breakdown must 
be judged quite good even though the very precise agreement indicated in figure 
11 should be regarded as fortuitous. 

A clear indication that ordinary secondary instability cannot explain the 
observed breakdown location is provided by a comparison of the dispersion 
diagrams of stations C and D as shown in figures 7 and 9. The maximum ampli- 
fication rate at station C (which if the effect of spatial inhomogeneities are dis- 
regarded is a rough measure of the total amplification during one primary cycle) 
is about the same as at station D; yet no breakdown is observed at the former, 
and the calculations do indeed clearly show that the secondary waves are far 
from the critical state at  this station. This is also brought out in figure 12, which 
gives a comparison between the calculated frequency (which is obtained from 
the wavenumber and the phase velocity at  the point of neutral stability, figure 9) 
and measured frequency of the secondary disturbance. The agreement is striking, 
whereas the frequency of the most amplified secondary disturbance is only about 
half of the measured value. The experimental values of the secondary frequency 
were obtained in I by counting the number of negative spikes per unit time in 
the oscillograms such as those of figure 27 in I. A closer inspection of the oscillo- 
grams reveals that the wave form indeed resembles that of a sinusoid with the 
positive half cycles missing as predicted from the discussions of the qualitative 
effects of nonlinearity presented in $3. 

The behaviour of the secondary disturbance immediately after breakdown 
can also be determined approximately from wave mechanical considerations. 
According to the analysis of 6 2 the critical secondary wave group should propa- 
gate along a trajectory close to the limiting one downstream from the crest 
(OQ in figure 3). In  calculating this trajectory, velocity profiles were employed 

t P. S. Klebanoff (private communication). 
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which were obtained by assuming the velocity a t  each value of y to vary sinu- 
soidally in ao.$ (ao being the wavenumber of the primary wave) between the value 
at  the crest (a,.$ = 0) and that for the mean profile (ao[ = &r) downstream of the 
crest. Prom the calculated dispersion relation for each such profile the group 
velocity was then determined for the wavenumber corresponding to the same 
frequency (as measured in a co-ordinate system following the primary wave) 
as that of the critical secondary wave according to (24) (hence taking the primary 
wave to be neutrally stable). The propagation velocity along the trajectory thus 
obtained is shown in figure 13 together with the estimates in I of the propagation 
velocities of the spike-like secondary disturbances. The agreement is surprisingly 
good in view of the crudeness of the calculation procedure with the theoretical 
values being somewhat on the low side. If one were to consider a Fourier decom- 
position of a single spike (consisting, say, of a half wave of the critical secondary 
wave disturbance) instead of an infinite wave train of the critical frequency, the 
propagation velocity would probably come out somewhat higher as the lower 
wavenumber regime having higher group velocities (and higher growth rates) 
would then also come into play. In  particular, this may diminish somewhat the 
apparent deceleration towards the phase of the mean velocity profile of the 
primary wave (ao.$ = +n) seen in the diagram. As was pointed out above in Q 3, 
however, the induced velocity due to the ‘legs’ of the hairpin vortex would have 
an increasingly stronger vertical component as the hairpin travels downstream, 
making its ‘head’ move further away from the wall and hence be accelerated. 
Thus, in the later stages of hairpin travel, one should expect larger departures 
from the two-dimensional theory. Nevertheless, the results shown in figure 13 
suggest that simple wave kinematics could explain much of the observed 
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behaviour of the spike, in particular its acceleration away from the crest 
immediately after it is formed. 

Although direct quantitative comparisons of the present theory with experi- 
ments have been confined to those of I, some further qualitative comparisons can 
be made with other experiments on breakdown. The measurements of the instan- 
taneous vorticity distribution carried out in the transition experiments by 
Kovasznay et al. (1962) are particularlyrevealing in the light of the present theory. 
In their experiments, controlled three-dimensional disturbances were introduced 
as in the measurements of I, and an array of hot wires was used to determine the 
instantaneous velocity profiles of the boundary layer at  several instants during 
the primary oscillation cycle for different amplitudes of the oscillating ribbon. 
The results were displayed in such a way as to suggest the streamwise variation 
of vorticity (implicitly assuming that the primary wave growth rate was small 
so that it could be considered ‘frozen’ as it is convected past the position of the 
hot wires). Their figure 10 is reproduced in the present figure 14. In  the earlier 
stages just preceding breakdown a strong concentration of vorticity in the middle 
part of the boundary layer is evident with values exceeding the maximum in the 
steady boundary layer. This excess is most likely due to stretching of vortex lines 
produced by the divergence of the primary wave ray lines from the peak resulting 
from the warping of the primary wave front as described above. This is borne out 
by figure 12 in their paper, which shows that the vortex stretching is large and 
positive only upstream of the crest. In  the later stages of breakdown (=  higher 
ribbon amplitude) the region of high vorticity downstream of the crest is seen to 
compress, to intensify and to develop a ‘kink’. The compression and intensifica- 
tion of the downstream shear layer is most readily explained in the light of 
the present theory as being due to the convection of disturbance vorticity of 
positive sign by the secondary waves travelling upstream towards the crest 
during the initial nonlinear phase of the breakdown as described in $ 3  (see 
figure 5 ) .  The kink is just a manifestation of the development of the first secondary 

L J ,  
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half wave of large strength. The phase velocity of the critical secondary wave 
is very close to c; (see figure 9), so that to an observer riding with the primary wave 
it would appear like an almost steady wavelike warping of the shear layer. The 
hot wire located just below this kink would register a negative spike in the 
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oscillogram. With higher ribbon amplitude there is room for more than one spike, 
and the two-spike stage develops, etc. Kovasznay et ak. (1962) also observed that 
the breakdown region has the shape of a blunt-nosed delta with its apex pointing 
downstream. As was pointed out in 5 3, this is consistent with the wave picture, 
since the spanwise extent of the critical region grows when the primary wave 
moves downstream, and the initial secondary wave at  the apex of the delta 
accelerates away from the crest as described above. 

The experiments of Obremski & Fejer (1967) are especially interesting from 
the point of view of the present theory since the basic large-scale inhomogeneity 
was there produced by subjecting a Blasius boundary layer to a sinusoidally 
oscillating pressure gradient rather than by the Tollmien-Schlichting waves 
themselves. The high frequency disturbance appearing a t  transition seem to be 
Tollmien-Schlichting type instability waves modified by the periodic variations 
of the instantaneous velocity profile. These come in more gradually than in the 
oscillating ribbon case and do not show any spikes. Calculations of the total 
amplification of a wave packet through the free-stream oscillation cycle carried 
out by Obremski & Morkovin (1969) show that the measured frequency a t  break- 
down is fairly close to that for the wave packet receiving the highest total 
amplification. (In these calculations, the effect of space-time focusing was omit- 
ted as was the change of frequency of the packet during the cycle resulting from 
the application of (4).) This result is not inconsistent with the present theory for 
the breakdown of an instability wave, since for a neutrally stable primary wave 
the secondary wave spending the largest time in the unstable region is that of 
marginal instability (see 0 2). To see whether the critical condition of the present 
theory is satisfied, one would need to determine co from (391, which requires the 
calculation of time and space derivatives of the group velocity. Some pre- 
liminary estimates based on the available calculated dispersion relationships for 
the family of profiles of interest (Obremski, Morkovin & Landahl 1969) indicate 
the possibility that co could in some cases be sufficiently small during part of the 
primary cycle to lead to criticality. However, despite the fairly extensive set of 
calculated dispersion data, the tables available at  present are not sufficiently 
detailed to allow the required computation of derivatives with any accuracy, 
so that no definite conclusion can as yet be drawn as to whether the present model 
applies to these experiments. 

5. Discussion 

The general theory for breakdown presented here is based on two fundamental 
assumptions: (i) that there is a disparity of length scales between primary 
and secondary wavelike disturbances, so that it becomes meaningful to consider 
the secondary waves as riding on the primary ones, and (ii) that the inhomo- 
geneity due to the primary disturbance is slowly varying, so that kinematical 
wave theory applies. In the boundary-layer transition case the assumption (i) 
is satisfied because the primary Tollmien-Schlichting wave has an internal shear 
layer of small thickness (aoR)-*6 (where a. is the primary wavenumber) which is 
also subjected to the thinning effect of vortex stretching through the three- 
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dimensional development as described above. Inviscid stability theory predicts 
that the secondary wavelength at  marginal stability is of the order of the shear- 
layer thickness. For a shear layer that is inviscidly unstable such as a jet or wake, 
there is no internal friction layer in the primary instability wave, and the dis- 
parate length scales do not arise. Thus, one would not expect breakdown in such 
shear flows, and experiments do indeed bear this out. The assumption (ii) is 
satisfied if A, = eohl/Ao and A2 = E ~ W , / W ~  are both small, where e0 is the primary 
(non-dimensional) amplitude, A, its typical wavelength, A, the wavelength of 
the secondary disturbance, and wo and w, the corresponding primary and second- 
ary frequencies, respectively. In  the experiments of I, the ratio of wavelengths 
is about l /S  (using either the streamwise or spanwise primary wavelength as a 
reference) and the primary fluctuation amplitude is about 0-i ,  giving for the 
above non-dimensional quantities A, N iO-2  2~ A2, which should provide ample 
assurance for the validity of the kinematical wave theory. This theory may be 
considered the first term in an asymptotic series expansion in A, except that it 
does not deal with the fist-order effects on the mode function. As we have only 
used it to determine under what conditions the secondary wave amplitude be- 
comes large and hence the nonlinear effects dominant, however, this shortcoming 
of the kinematical theory need not concern us here. 

The wave theory was shown to account for most of the observed features of 
breakdown in a boundary layer in surprising amount of detail. In  particular, the 
theory may shed some new light on the question of the somewhat puzzling 
role of three-dimensionality . In  the new theory three-dimensionality is mainly 
important in setting up the local flow conditions leading to criticality, whereas 
the breakdown process itself is predominantly two-dimensional and governed 
by the behaviour of the local instantaneous velocity profiles near the region 
of breakdown. Besides being consistent with the estimates of the scales of pri- 
mary inhomogeneities given above, this point of view is also to some extent 
supported by the observations in I that the measured velocity profile at transition 
behind a roughness element bears a striking resemblance to the instantaneous 
one at breakdown behind an oscillating ribbon. However, the roughness-element 
case requires a great deal of further study before it can be fully understood, 
particularly in view of the very strong three-dimensionality of the flow in this 
case. To remove the restriction to weak spatial inhomogeneities in the present 
theory one would require a considerably more difficult analysis, which would 
possibly be worthwhile, however, in view of the important role of spatial inhomo- 
geneities revealed by the present analysis. (Strong temporal inhomogeneity is 
more easily handled, as was demonstrated in the Greenspan & Benney (1963) 
treatment. ) 

In  fact, the primary instability process itself is only incidental to breakdown 
and transition, since one can easily produce a breakdown condition by a suffi- 
ciently intense local disturbance of the shear flow, for example through free- 
stream disturbances. If the breakdown is to be self-maintained as it travels 
downstream, however, hydrodynamic instability is required. In a sense, the 
breakdown mechanism is the one most essential in transition of a boundary layer 
to turbulence rather than the classical hydrodynamic instability one since the 
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former represents a strongly irreversible process. An unstable small amplitude 
wave packet of the Tollmien-Schlichting type may amplify for a while as it 
moves downstream, but once it has passed through a particular streamwise 
position in the boundary layer it will leave the shear flow practically undisturbed 
as before the passage of the packet, except for a small deformation of the mean 
flow of second order in disturbance amplitude. At breakdown, on the contrary, 
there is an irreversible redistribution of the basic shear flow vorticity due to the 
nonlinear rectification mechanism. This suggests that the various methods pro- 
posed for delaying transition (boundary-layer suction, flexible walls, etc.) 
should be re-examined as to their effectiveness in influencing breakdown. 

From the dynamical point of view, the almost instantaneous formation of 
the more-or-less concentrated hairpin vortex must be associated with a nearly 
impulse-like concentrated force acting on the flow at the centre of the hairpin 
in the upstream direction (cf. the concept of Kelvin impulse and its relation to 
circulation in ideal-fluid mechanics). This must correspond to a strong local shear 
stress impulse on the wall at the breakdown location. That the breakdown thus 
will produce a strong local contribution to the Reynolds stress is of interest 
in connexion with the recent findings by Kline and co-workers (Kline et al. 1967; 
Kim et al. 1971) that the major contribution to the Reynolds stress in a fully 
developed turbulent boundary layer comes from intermittent ‘ bursts ’ of turbu- 
lence, which seem to have many characteristics in common with the breakdown 
process in a laminar boundary layer. It has been demonstrated (Landahl 1967) 
that Tollmien-Schlichting type waves of random amplitude and phase are excited 
in the turbulent boundary layer, and in view of the present theory it is likely that 
they can interact in a linear or weakly nonlinear fashion so as to produce a critical 
condition leading to breakdown. Since the primary waves are found to be damped 
for the turbulent mean velocity profile, a nonlinear mechanism is required to 
produce them, and the breakdown mechanism itself is the most likely candidate 
for acting as a stirrer as it is strongly nonlinear. Considerable efforts would be 
required to analyse whether waves breaking down and thus triggering new waves 
can lead to a self-sustaining mechanism of turbulence and the details of this 
process should provide a fertile field for further study. 

Although the main emphasis in this paper has been on shear flows, the theory 
suggests that breakdown should be a common phenomenon in all continuum 
systems, be they solid, liquid or gaseous, whenever wavelike disturbances of 
disparate length scales can arise. Such situations should be particularly abundant 
in geophysical fluid flows. One possible application from the field of wind-induced 
water waves can be mentioned. Capillary waves of very short wavelength may 
focus on a gravitational wave and thereby produce a strong nonlinear mechanism 
for transferring wind energy to long waves. Preliminary calculations along this 
line indicate that strong coupling between wind and water then may take place 
in regions outside the wave velocity regimes in which Miles’s (1959) mechanism 
is operative. By drastically reducing the tension, for example by spreading oil 
on the surface (see Barger et al. 1970; Mollo-Christenson 1971), one can suppress 
this transfer mechanism and thus becalm the waters. 
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Appendix. Approximate solution of equation (32) 
The approximate solutions of the derived ray equation (32)  (Hayes 1970) are 

sought in the neighbourhood of 0 (figure 2 ) .  I n  this region Qax is small, so that the 
second term may be neglected. Furthermore, LRaE and LR,, may be approximated 
by constants, so that we may instead of (32)  consider the simpler equation 

a aa 
at ax 
- - = B (g)2 - C. 

By introducing p = (aa/ax)-l this can be transformed into the following separ- 
able equation: 

Upon integration, the final result may be written as 

dp/dt = Cp2- B. (A 2 )  

where 

* 1 - S exp [2(BC)* (t - t,)] 
1 + S exp [2(BC)4 (t  - t,)]’ 

It follows from this result that &/ax can become infinite somewhere along the 
trajectory only if - 1 < S < 0, i.e. if 

(aalax), > (c/B)%. (A 5 )  

For a ray that starts out along the axis 6 = 0, (aa/ax), = 0 and (&/ax) remains 
finite. Thus any ray that crosses 6 = 0 cannot focus. 
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